SYNTHESES AND PROPERTIES OF TRIMETHYLBISDEHYDRO[15]ANNULENONE AND ITS BENZANNELATED DERIVATIVES

Jūro OJIMA,* Kazuyo WADA, and Keiko KANAZAWA
Department of Chemistry, Faculty of Science, Toyama University, Gofuku, Toyama 930

Syntheses of 5,10,15-trimethy1- 6, 10,15-dimethy1benzo[d]-6,8-bisdehydro[15]-annulenone 7, 2,12-dimethy1benzo[f]-8,10-bisdehydro[15]annulenone 8, and 15-methy1-dibenzo[d,j]-6,8-bisdehydro[15]annulenone 9 are described. As observed for the corresponding [17]annulenone, the ¹H-NMR spectra of these annulenones suggest that the skeleton of the bisdehydro[15]annulenone of this type is more planar and less strained than that of [13]annulenone.

It was found that the methyl substituent adjacent to the ketone group of the 2,5910-trimethyl-6,8-bisdehydro[13]annulenone \downarrow causes a change of conformation due to a rotation of the another trans double bond¹⁾ and benzamnelation also exert a considerable influence on the development of the paratropic character in bisdehydro[13]annulenone of type \downarrow .²⁾ In contrast, for the corresponding [17]-annulenone series, the α -methyl substituent and benzamnelation exerts no significant influence upon

Chemistry Letters, 1979

the skeleton of bisdehydro[17]annulenone system of 2.3)

In view of the difference observed between [13]- and [17] annulenone system, we were interested in examining the properties of the title compounds, *i.e.*, 5,10,15-trimethyl-6,8-bisdehydro[15] annulenone ξ and its benzammelated derivatives ξ - ξ , and the properties of the annulenones ξ - ξ which were prepared previously. 4,5)

The successful syntheses of the annulenones 3-5, 4, 5 together with a prediction from the Dreiding molecular models led us to expect that the annulenones possessing α -methyl group inside the ring might form from the corresponding acyclic ketones by the same approach (e.g., 6a from 12). However, all the compounds 6-9 obtained proved to have configuration with α -methyl group outside the ring by an analysis of their 1 H-NMR spectra.

The syntheses of the annulenones &—& were carried out by the same procedure as previously reported. $^{1-3)}$ Condensation of 3,8-dimethyl-3,5,7-decatrien-9-yn-2-one &0²⁾ with (Z)-3-methyl-2-penten-4-ynal &1⁶⁾ in the presence of ethanolic sodium ethoxide in ether for 6 h at room temperature gave the acyclic ketone &2 (mp. 97—98°C, 31%). Oxidative coupling of 12 with anhydrous copper(II) acetate in pyridine and ether for 2 h at 50°C⁸⁾ yielded the annulenone &9 (yellow cubes, mp. 136—137°C, 44%). Similarly, the condensation of &0 with o-ethynylbenzaldehyde &3, $^{10)}$ gave the ketone &4 (mp. 130—131°C, 69%), which was oxidized to yield the benzannulenone &7 (yellow rods, mp. 150°C (dec), 76%). Reaction of 6-(o-ethynylphenyl)-3-methyl-3,5-hexadien-2-one &53 and &1 as that between &0 and &1 afforded the ketone &6 (mp. 125°C (dec), 36%). Oxidation of &6 as before gave the another benzannulenone &8 (yellow

H₃C
$$CH_3$$
 CH_3 C

Fig. 1. The UV spectra of 6 (-----), 7 (----) 8 (----), and 9 (----) in ether

Fig. 2. The 90 MHz NMR spectra of $\underline{6}$ in $\mathrm{CDCl_3}^{11)}$

Table 1. The ¹H-NMR data of 3-9 (in CDC1₃) and 3!-9! (in CF₃COOD) at 90 MHz (τ values) ¹²)

-	н ^А	H ^A '	н ^В	H ^B '	H ^C	H ^{C'}	H ^{D'}	H ^E '	benzenoid H	CH ₃
3	3.35	4.37	4.17	2.44	2.85	3.19	4.53	2.85		7.76, 7.82
≾ '	1.31	10.10	9.92	0.29	0.89	1.28	10.15	0.89		6.73, 6.82
4					1.96	3.52	2			7.88
4'	1.92	5.55	4.75	1.35		2.55	5.43	2.17	1.32-2.08	7.47
 5		2.10 ~ 3.62 ~ →								7.85
≦ '	2.60	4.91	4.80	(1.9	$0 \sim 2$	35)	4.87	(1.90–2.3	35) 1.58-2.35	7.40
6	3.33		4.38	4.53	2.73	2.82	4.61	2.91		7.79, 7.90, 7.95
<u>6</u> '	1.60		8.52	8.05	1.30	1.25	8.95	1.33		6.89, 7.07, 7.12
\overline{z}	2.97		3.20	3.58		3.05	3.72	2.90	2.07-2.80	7.93, 7.98
$\tilde{\mathcal{Z}}^{,13}$	5) ←—				1.60 ~	<u>4.80</u>	0 ——			7.70, 7.80
<u>8</u>	-				2.3	3.8				7.90, 7.95
<u>8'</u>	2.68		4.65	4.55	2.45 ((1.8–2.4)	4.43		1.8-2.4	7.52, 7.60
2					2.13	3.32	2		──	7.92
9'					2.2	3.4				7.78

needles, mp. 160-161°C, 48%). Condensation of 15 with 13 gave the acyclic ketone 17 (mp. 111-112°C, 49%), which was led to the dibenzannulenone 9 (light yellow cubes, mp. 182-183°C, 68%).

The UV spectra of 6-8 are illustrated in Fig. 1. The longest wavelength band of these annulenones exhibits absorption toward longer wavelength in the sequence of 6<7>8>9, demonstrating the degree of extended conjugation of π -electron system in bisdehydro[15]annulenone ring.

The $^1\text{H-NMR}$ spectra of 3-2 at a variable temperature were taken at 90 MHz in the range of -60 to 60°C , $^{11)}$ and the spectra of all these annulenones 3-2 proved to be essentially temperature-independent. The spectra of the trimethylbisdehydro[15]annulenone 6 which is the higher analogue of the conformationally mobile compound 1, are indicated in Fig. 2. On cooling, the resonances of the inner protons $(\text{H}^B,$

 $H^{B'}$, $H^{D'}$) move to a slightly higher field, whereas those of the outer (H^{A} , H^{C} , $H^{C'}$, $H^{E'}$) and three methyl protons do to a slightly lower field. However, the first-order pattern expected for the structure of 6 is observed even at -60°C, and the $J_{B,C}$ value (11 Hz) of $H^{B'}$ H^{C} bond which is the potentially mobile bond in view of the case of 1, points to the s-trans relationship of the bond from -60 to 60°C, excluding a change of conformation of 6 at this temperature range. Thus, in analogy with the corresponding [17]annulenones, $J^{(a)}$ the extra methyl substituent adjacent to the carbonyl group exerts no significant influence upon the skeleton of this bisdehydro[15]annulenone system, in contrast to the case of [13]annulenone system. $J^{(a)}$

The 90 MHz 1 H-NMR data of the annulenones \mathfrak{Z} - \mathfrak{Q} are listed in Table 1, altogether with those of deuteronated species \mathfrak{Z}' - \mathfrak{Q}' which were obtained by dissolving in deuteriotrifluoroacetic acid. (12) Examination of the 1 H-NMR spectra of \mathfrak{Z} - \mathfrak{Q} as well as the comparison with those of the respective acyclic ketones, 14 indicates that the methylated annulenones \mathfrak{Z} , \mathfrak{L} are diatropic, whereas monobenz- \mathfrak{L} , \mathfrak{L} , \mathfrak{L} , \mathfrak{L} and dibenzannulenone \mathfrak{L} are atropic. On the other hand, in the corresponding deuteronated species \mathfrak{L}' , \mathfrak{L}' are strongly diatropic, \mathfrak{L}' , \mathfrak{L}' , \mathfrak{L}' , \mathfrak{L}' are diatropic, and \mathfrak{L}' is atropic, in accord with the result obtained for the related compounds.

It is also noted that the inner protons of δ ' resonate at a lower field than those of δ ', presumably reflecting less planarity of the skeleton of δ ' due to the perturbation caused by the extra methyl group, as compared with that of δ '.

References and Notes

- 1) T. M. Cresp, J. Ojima, and F. Sondheimer, J. Org. Chem., 42, 2130 (1977).
- 2) J. Ojima and M. Fujiyoshi, Chem. Lett., 1978, 569.
- 3) J. Ojima, K. Kanazawa, K. Kusaki, and K. Wada, Chem. Lett., 1978, 1009.
- 4) For a preliminary report, see J. Ojima and F. Sondheimer, Abstracts, 30th Annual Meeting of the Chemical Society of Japan, Osaka, April 1974: J. Ojima, Y. Shiroishi, and F. Sondheimer, to be published.
- 5) J. Ojima and Y. Shiroishi, Bull. Chem. Soc. Jpn., <u>51</u>, 1204 (1978).
- 6) J. Ojima, T. Katakami, G. Nakaminami, and M. Nakagawa, Bull. Chem. Soc. Jpn., 49, 292 (1976).
- 7) All the compounds described in this paper gave IR, NMR, and mass spectral data consistent with the assigned structures and satisfactory elemental analyses were obtained.
- 8) N. Darby, T. M. Cresp, and F. Sondheimer, J. Org. Chem., 42, 1960 (1977); J. Ojima, Y. Shiroishi, and M. Fujiyoshi, Bull. Chem. Soc. Jpn., 51, 2112 (1978).
- 9) Attempts to prepare the annulenones possessing bulky α-alkyl group, such as ethyl, isopropyl, and t-butyl were unsuccessful owing to the unsatisfactory result of the preparation of the methyl ketones corresponding to 10.
- 10) J. Ojima, T. Yokomachi, and A. Kimura, Bull. Chem. Soc. Jpn., 49, 2840 (1976).
- 11) The NMR spectra at a variable temperature were taken on a Hitachi R-900 spectrometer.
- 12) These spectra were taken on a Varian EM-390 spectrometer at 35°C and the assignment was made on the basis of multiplicity, coupling constants, and the data of the closely related compounds (Ref. 1-4).
- 13) In the spectrum of 7', the signals due to olefinic protons show rather puzzling pattern and the analysis is not complete yet.
- 14) This refers to the comparison of the chemical shifts of olefinic and methyl protons with those of the respective corresponding acyclic ketones. The details will be reported elsewhere.
- 15) R. T. Weavers. R. R. Jones, and F. Sondheimer, Tetrahedron Lett., 1975, 1043.